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1. 

The vibrating membrane constitutes a dynamic system which can be found in a multitude
of scientific and technological applications [1, 2]. When the mass per unit area of the
membrane, r, is constant the problem is a classical one and exact and approximate
solutions are available for a great variety of situations.

If the parameter r is not constant, e.g., due to desired service conditions or undesired
homogeneities introduced by the manufacturing process, one must make use, in general,
of approximate analytical and/or numerical procedures [3, 4].

The present study deals with the case in which the density of the membrane, r, is a linear
function of the x-variable:

r= r0(1+ a(x/a)). (1)

Two independent solutions are obtained using the optimized Galerkin–Kantorovich
approach [5] and the differential quadrature (DQ) method [6].

2.     – 

When the system executes transverse, normal modes of vibration, its behavior is
described by

92W+
r0(1+ ax̄/a)

S
v2W=0, W[L(x̄, ȳ)=0]=0, (2a, b)

where W is the amplitude of vibration and L(x, y)=0 is the functional relation which
describes the boundary of the membrane.

Introducing the dimensionless variables x= x̄/a and y= ȳ/b, substituting in equation
(2) and making

W2Wa =[A(xg − x)+B(xg+1 − x)] sin py, (3)

where g is Rayleigh’s optimization parameter, one is able to use the well established
Galerkin–Kantorovich procedure. Once the frequency determinant has been generated,
one determines its lowest root V1 = (zr0/S)v1a, which constitutes the fundamental
frequency coefficient.

Since

V1 =V1(g), (4)
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by requiring

dV1/dg=0, (5)

one obtains an optimized value of V1.

3.        

The DQ method was originally proposed by Bellman and Casti [7], but its use has
become quite popular in recent years, thanks to the efforts of Bert and coworkers [6].

Through application of the technique, and making use of Bert’s notation [6], one obtains
the following linear system of equations:

s
N−1

k1 =2

Bik1Wk1j + l2 s
N−1

k2 =2

Bjk2Wik2 +V2giWij =0, i, j=2, 3, . . . , N−1, (6)

where gi = g(xi)=1+ axi , l= b/a, V=(zr0/S)va, xi are the co-ordinates of the
partition station points in the x direction, and N is the number of points of the partition
in each direction (all calculations were performed with N=9).

The lowest root of the corresponding determinantal equation constitutes the
fundamental frequency coefficient V1.

4.  

In Table 1 is depicted a comparison of values of V1 obtained by means of the optimized
Galerkin–Kantorovich method and the differential quadrature method for a=0 (constant
density case), 0·1 and 1. For a=0 the results are in excellent agreement with the exact
eigenvalues and for a=0·1 and 1 the agreement is remarkably good between the results
obtained by both techniques.

Apparently, the numerical results for V1 previously published in the technical literature
[4] are in error for a=1 and b/a=0·6, 0·4 and 0·2, since they are almost 30% higher than
the results published in the present investigation.

Furthermore, for b/a=0·6 and 0·2 they turn out to be higher than the fundamental
frequency coefficient corresponding to a homogeneous membrane (a=0). This is clearly
unacceptable from a physical viewpoint since for the present problem, the
non-homogeneous membrane possesses more mass.

T 1

Values of the fundamental frequency coefficient V1 for a=0, 0·1 and 1·0, obtained by means
of the optimized Galerkin–Kantorovich method, the DQ technique and those determined in

reference [4] for a=1, for several values of b/a

Optimized Differential
Galerkin–Kantorovich Quadrature Reference

[4]
b/a a=0·0 a=0·1 a=1·0 a=0·0 a=0·1 a=1·0 a=1·0

1·0 4·44291 4·33539 3·61050 4·44289 4·33539 3·61043 3·61048
0·8 5·02902 4·90719 4·08151 5·02901 4·90719 4·08144 4·08151
0·6 6·10618 5·95791 4·94227 6·10617 5·95790 4·94214 6·70702
0·4 8·45901 8·25221 6·80011 8·45901 8·25221 6·79752 8·25861
0·2 16·01905 15·61337 12·56272 16·01906 15·61334 12·56414 16·5987
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Figure 1. The mechanical system under study. (a) Membrane of non-uniform density, r= r0(1+ ax̄/a);
(b) partition of the interval when applying the DQ method.

The approaches used in the present study are also applicable if the mass density function
is a more complicated functional relation. If it possesses discontinuities, it will be more
convenient to make use of the optimized Rayleigh–Ritz method.
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